INFLUENCE OF SOUND WAVES ON STEADY DUCT FLOW

V. A. Murga UDC 534.29

The article discusses the problem of determining the secondary steady flow in a plane duct
when a sound field is superimposed on an undisturbed compressible laminar flow. It is shown
that under certain simplifying conditions the velocity distribution of the secondary flow in the
wall region is given by a simple analytical expression. In the rest of the duct the problem is
reduced to the solution of a linear fourth-order ordinary differential equation (in complex
variables); this problem is solved numerically. The indicated equation is transformed to an
Airy equation for large Reynolds numbers Re of the undisturbed flow. The results are pre-
sented graphically.

§l. Itiswell knownthatperiodic velocity perturbations affect a steady (average) viscous fluid flow, This ef-
fect is attributable to the nonlinearity of the hydrodynamical equations. The determination of average flows is
of considerable importance but meets with exceptional mathematical difficulties in the general case.

C. C. Lin {1} has introduced simplifying conditions to derive an equation for the resultant average lami-
nar flow near the surface of a solid for the case in which steady flow is superimposed on & fluctuating fluid
motion. The fluctuation components entering into the Reynolds stresses in this case can be determined inde-
pendently of the steady flow.

In the present article we use Lin's idea to find the average flow in a plane duct. Suppose that sound
perturbations act on an undisturbed steady laminar viscous fluid flow in such a way that the direction of the
oscillatory motion of the fluid particles on the duct axis is parallel to the duct walls; we assume that the fluc-
tuation component of the velocity on the duct axis is given by the expression

u; = 4 cos kx-cos wot, (1.1

in which u; is the longitudinal fluctuation velocity, A is the fluctuation velocity amplitude, k = w/c is the
wave number, w is the cyclic frequency, t is the time, ¢ is the velocity of sound, and x is the longitudinal
coordinate. The flow is considered to be two-dimensional. Gravity forces are excluded. The following as-
sumptions are introduced:

i) V=V, = Vi.p=0p 0.0 =P~ D5
2) P = 05¢% ,
3) all variables vary significanily in the (1.2)

longitudinal directon at distances not
iess than the sound wavelength;

4) the dynamic viscosity coefficient p
is constant,

R NV ——

Here the subscript 0 denotes the steady-state value, the subscript 1 denotes the fluctuation value, which
vanishes when averaged over a large time interval; V is the velocity; p is the pressure; and p is the density.

The problem is solved under the following conditions;

1y M, <« 1

2) My« 4 1.3
3) p1 K Po (1.3)
4y oriv> 1, ohiv> 1,

where M is the Mach number, A is the sound wavelength, v is the kinematic viscosity coefficient, and h is
the half-width of the duct.
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A previous attempt has been made [2] to solve this problem subject to the foregoing assumptions and
conditions, but the equation obtained there for the average flow is incorrect.

§2. We adopt the following initial equations:

pldV/ot + (Vy)V] = —yp + pAV + (13)uy(vV); 2.1
ap/ot + y(pV) = 0.

These equations must, in general, be augmented with the energy-balance and state equations, but it will
be shown below that under the stated conditions and assumptions the average flow can be regarded as incom-
pressible at distances of the order of the sound wavelength along the duct, and the fluctuation (compressible)
flow is completely determined in the problem as stated.

We represent the variables V, p, and p by sums of steady and fluctuation components, which we substi-
tute into (2.1), and then after the usual operations of time averaging and subtraction of the average equations
from the complete equations, rejecting small quantities by means of (1.2) and (1.3), we obtain a system of
equations for the fluctuation components:

pedV /01 = —yp, + uAV; (2.2)
9py/dt + poy V1 = 05 p; = pyc?.

The last equation in (2.2) is taken from (1.2). The solution of (2.2) satisfying the sticking condition at
the wall and condition (1.1) has the form [taking (1.3) into account] [3]

u; = A cos kxlcos ot — exp (—n)-cos (0t — 1) ]; (2.3)
v, = —(k/B1/2)A sin kxlcos (of — n/4) — exp (—n)-cos{wt — 1 — a/4)],

where uy; and v, are the longitudinal and transverse components of the vector Vi3 8 = v w/2v; n = yB; and
y is the distance from the wall. The expression for v; in (2.3) is valid only near the wall (at distances of
order Vv /w), because relations (2.3) were obtained in the boundary-layer approximation.

We now determine the steady flow. It is evident that the undisturbed steady flow can be treated as in-
compressible, i.e., as Poiseuille flow, at distances of the order of the sound wavelength along the duct. Thus,
we approximately obtain from the expression for Poiseuille flow (allowing for the fact that p;/py ~M;)

[6p o 0x | ~ Ugu/h® ~ (M /M) (v/0h?)pco,
where py, py, and My are the pressure, density, and Mach number in the undisturbed flow;
|0p1/0x| ~ |py/H~ pieo.
Comparing the foregoing expressions, we obtain for the finite values of My/M; (or My/My)
l0py /32| <|ps/H,

because v/wh? <1 by stipulation. Consequently, the pressure difference py at a distance A along the duct is
small in comparison with the fluctuation pressure difference p;. This means that the density py as well
varies only slightly at distances of order A in comparison with the variation of the fluctuation density py, i.e.,
the undisturbed flow can be treated as Poiseuille flow over an interval of length A along the duct.

We show below that the steady "increment' to the Poiseuille flow velocity is equal in order of magnitude

to uj/c. Then ,

) u
{divVy|~ 3;1 . (2.4)
From the equation of continuity in (2.2) we obtain
[div Vi ~ ©p./p,. (2.5)
It follows from (2.4) and (2.5) that

L divV, | ut

I divvf |~ e T My

Iasmuch as M; < 1 by stipulation, we have |div V) | « | div V; |, permitting us to set div V, = 0.
In light of the foregoing we write the steady-flow equation in the form

pO(VOV)VO = —ype + uAVy —{ p,8V,joty — 0o(Vi V)V ; (2.6)
div V, = 0,
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where the angle brackets denote the average over the wave period. The velocity V, must vanish at the duct
wall; moreover, it is required to specify the mass flow of fluid through the cross section of the duct (the
mass flow is determined by the given Poiseuille flow). Let V, denote the secondary flow velocity (u, and v,
are the longitudinal and transverse components), so that the total average velocity V; is the sum of V, and
u, (Poiseuille flow velocity vector in the direction parallel to the duct wall). Then, introducing the stream
function ¥(u, = 8/dy, v, = —9Y/8x) and computing the terms in the angle brackets, we rewrite (2.6) in the
form

(ug + OO0 ) — {0y dx)(d?uy dy* — dNG Iy) = vAAp -+ f{y) sin 2kr, (2.7

where . . .
Hy) = —(4%B.2)[—2 exp(—n) cos  — exp (—n) sin y — exp{—2n)],

with the boundary conditions
at the wall (y=0)

¢o= ap.dy = 0
on the axis (y=/}

b= 0pay* = 0.

The function f(y) differs significantly from zero only in a wall zone of thickness ~vV v/w. It can there-
fore be assumed that the unknown secondary flow forms a boundary layer in the wall zone (this assumption is
justified by the end result). Then, comparing the terms on the left-hand side of Eq. (2.7) with the term
v AAY, we verify that they are all much smaller in absolute value than the comparison term. For example,
the first term in (2.7) has order of magnitude

[, 0AY. il ~ |uyyi 87
where 8 = V2 v/w; also
AN ~ (v & ~ ] 8%

It is evident from this result that
[Ug@AY Q| ~ g hey ~ M. -
|v AA Y

The given ratio is much smaller than unity, because M, << 1 by stipulation. Thus, in a wall zone of thickness
~ 0 Eq. (2.7) is simplified:
v(a' dyt) = —f(y) sin 2kx. (2.8)
The solution of (2.8) satisfying the wall sticking condition and bounded in the wall zone has the form
u, = (A% sin 2kz4vf?) [—(1 2) exp (—y) cos 4 —(3/2) exp (—n) sin 1 —
—{14) exp {(—2u) + 3/4], 2.9

where u; = 99/ 8y. We do not compute the expressions for the transverse component vy, because it is not
needed below.

Substituting (2.9) into (2.7), we verify that all terms on the left-hand side of (2.7) are less in absolute
value than | v AAY |. At the outer boundary of the wall zone (7 — «) we have from (2.9)

u, = (3:8)(4%¢) sin 2%z,
In the external domain, i.e., everywhere except the wall zone of thickness ~4, the following equation holds:
(uy -+ VO OAY/Ox) — (0, 8x)d%us /dy? — Ay} =vAAY, (2.10)
along with the boundary conditions
v=0, 6P/dy = (3/8)(A%¢) sin 2kz 2t y=0;
$=0, *¢/9y*=0 at y=h. (2,11)

The error in [2] arises insofar as Eq. (2.8) is assumed to be valid in the wall and the external domains;
in the present statement of the problem there is no justification for this inference.

It is evident from (2.10) and ¢2,11) that the value of the function 8¢/8y = u, is equal in order of magni-
tude to A%/ ¢, whence we infer that
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o/ Usf ~ A2 fely = (M,/M,)2M,, (2.12)

where U is the maximum value of the Poiseuille flow velocity. For finite values of (M;/M;)? the ratio of
|uy| to | Up| is small, since My < 1. The characteristic linear scales of problem (2.10), (2.11) are the sound
wavelength A and the half-width h of the duct. We can therefore estimate the terms of Eq. (2.10}, showing
that the nonlinear terms on the left-hand side are small in comparison with the linear terms; the given equa-
tion is then linearized and assumes the form

u @AY/ — (dPuy/dy*) (O dz) = vAAY. (2.13)

Relations (2.13) and (2.11) describe the secondary flow in the external domain, i.e., everywhere except a nar-
row wall zone of thickness ~4&, in which the secondary longitudinal velocity u, is given by expression (2.9).

We seek the solution of problem (2.13), (2.11) in the form
Y(z, y) = Real ®(y) exp (—2ikz). (2.14)
We introduce the following dimensionless (indicated by an overbar) variables:
© = 8Qc/3hA% y=ylh; u;=uy/U,.
Substituting (2.14) into (2.13) and (2.11), we obtain a linear ordinary differential equation in &:

Q""" — (80 — 2izReug) + D(160* -+ 4in Re — 8in® Re ug)=0 (2.15)

along with the boundary conditions
D=0, D'=i for y=0;
- = — 2.16
O=0" =0 for y=1, ( )
where the prime denotes differentiation with respect to ¥; o = kh; Re = Uyh/v.

Problem (2.15), (2.16) is readily solved by a numerical method for not too large values of the parameter
Re ¢. The linear boundary-value problem is reduced to a system of Cauchy problems [4]}, which can be inte-
grated, for example, by the Runge—Kutta method.

The results of the solution of problem (2.15), (2.16) are given in Figs. 1-3. Figure 1 shows the second-
ary-flow streamline pattern for Re = 50, oo =1, where the zero ordinate corresponds to the outer boundary of
the wall boundary layer of thickness ~6 and unity, to the middle of the duct. Figures 2 and 3 show the pro-
files of the dimensionless longitudinal velocity T, = 8u,c/ 3A? in various cross sections of the duct for Re =
50 and 1000, respectively (solid curves) and @ =1. The u, profiles in the duct cross sections corresponding
to 2kx > 1 are not shown, because in this case U, changes sign, i.e., U, (2kx * 7) =—u,(2kx) according to
(2.14).

§3. For large values of Re ¢ difficulties arise in the numerical computation of problem (2.15), (2.16) in
connection with the smallness of the parameter 1/Re ¢ for the leading derivative in Eq. (2.15}. However, the
problem can be simplified. For Re o > 1 the secondary flow also forms a boundary layer in the external
domain (as is evident from Figs. 2 and 3). Within the limits of this boundary layer the expression for the
Poiseuille flow velocity can be regarded as a linear function of the transverse coordinate. With the fore-
going in mind we can compare the terms in Ed. (2.15) as in the derivation of the Prandtl equations; after the
rejection of small terms Eq. (2.15) assumes the form (in new dimensionless variables)

1" — n1=0, (3.1
1,0 T
ylh i
] U, v 0,6
v . R N ]
%89 / —— N '// !
R R, Y
o,d@)/éff—/,;\\\jh V2 -
‘ |
_ /// d\__ O //(\ o] -0,8 -0,4 0,0 ~ 0,4
o 0,3 0,7 1,1 2k /T . G,=8u,c/3A%
Fig, 1 Fig. 2
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where the prime denotes differentiation with respect to the coordinate 7:
vy Re)tB = @ (Rea)!S(— 403
N = (— 4&i) 5 T =@ q)“’_‘—”‘—“(ss/s)hm

The function @ and its derivatives are subject to the boundary conditions
D=0, @'=i for 1=0;

- = (3.2)
Q' =@"'=0 for |y > oc.

Equation (3.1) is an Airy equation. The dashed curves in Figs. 2 and 3 represent the longitudinal velocity
profiles U, obtained from (3.1) and (3.2}, along with the same results reduced to the corresponding values of
Re and . If is seen that for Re ¢ = 1000 {see Fig. 3) the solutions of problems (2.15), (2.16) and (3.1), (3.2}
differ insignificantly.

Equation (3.1) is valid under definite constraints on the values of Re ¢. The linear equation (2.15) was
obtained from (2.10) by means of the approximate relation (2.12). In the case of large values of Re o, how-
ever, the maximum Poiseuille flow velocity U, cannot be used as the characteristic velocity scale of the un-
disturbed flow (2.12), because the thickness 0¢ of theboundary layerbecomes small in comparison with the width
of the duct. In this case the appropriate velocity scale is the quantity Uy6e/h. For the linearization of Eq.
(2.10) it is necessary to satisfy the condition [analogous to condition (2.12)]

lughiUde| < 1. (3.3)

Inasmuch as
8. b ~ 1/(Re a)'/3,

we can rewrite (3.3) in the form
(Re a)'/® < (Mg/M,)*(1/M,).

The author is indebted to V. E. Nakoryakov for valuable comments and interest.
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