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The ar t ic le  d iscusses  the problem of determining the secondary steady flow in a plane duct 
when a sound field is super imposed  on an undisturbed compress ib le  l aminar  flow. It is shown 
that under cer ta in  simplifying conditions the velocity distribution of the secondary  flow in the 
walt region is given by a simple analytical  expression.  In the res t  of the duct the problem is 
reduced to the solution of a l inear  fou r th -o rde r  ord inary  differential equation (in complex 
variables) ; this p rob lem is solved numerical ly.  The indicated equation is t r ans fo rmed  to an 
Airy  equation for  la rge  Reynolds numbers  Re of the undisturbed flow. The resul ts  a re  p r e -  
sented graphically.  

~1. It is well known that per iodic  velocity per turbat ions  affect a steady (average) viscous fluid flow. This ef-  
fect is at tr ibutable to the nonlinearity of the hydrodynamical  equations. The determinat ion of average  flows is 
of considerable  impor tance  but meets  with exceptional mathemat ica l  difficulties in the general  case. 

C. C. Lin [1] has introduced simplifying conditions to derive an equation for  the resul tant  average  lami-  
nar  flow near  the surface of a solid for  the case  in which steady flow is super imposed  on a fluctuating fluid 
motion. The fluctuation components enter ing into the Reynolds s t r e s s e s  in this case can be determined inde- 
pendently of the steady flow. 

In the p re sen t  ar t ic le  we use Lin ' s  idea to find the average  flow in a plane duct. Suppose that sound 
per turba t ions  act on an undisturbed steady l aminar  viscous fluid flow in such a way that the direct ion of the 
osc i l la tory  motion of the fluid pa r t i c l e s  on the duet axis is paral le l  to the duct walls;  we assume that the f luc- 
tuation component of the velocity on the duct axis is given by the express ion 

u 1 = A cos kx.cos ot, (1.!) 

in which u 1 is the longitudinal fluctuation velocity,  A is the fluctuation velocity amplitude, k = ~0/c is the 
wave number,  w is the cycl ic  frequency, t is the t ime, c is the velocity of sound, and x is the longitudinal 
coordinate.  The flow is considered to be two-dimensional.  Gravity forces  a re  excluded. The following as -  
sumptions a re  introduced: 

I 

V = $70 + VI, 9 P0-- 91, P = Po- -P i ;  

3) all variables vary significantly in the (1.2) 
longitudinal direction at distances not 

i less than the sound wavelength; 
4) the dynamic viscosity coefficient 12 

Is corlstant. 

Here the subscript 0 denotes the steady-state value, the subscript I denotes the fluctuation value, which 
vanishes when averaged over a large time interval; V is the velocity; p is the pressure; and p is the density. 

The problem is solved under the following conditions: 

1) Mo << 1; 
2) M1 << 1; (1.3) 
3) p~ << %; 
4) o~?-/v >> t, oh"-,'v >> 1, 

where  M is the Mach number,  ~ is the sound wavelength, v is the kinematic viscosi ty  coefficient, and h is 
the half-width of the duct. 
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A previous  at tempt has been made [2] to solve this problem subject to the foregoing assumptions and 
conditions, but the equation obtained there  for  the average  flow is incorrec t .  

w We adopt the following initial equations: 

p[OV/St  + (Vv)V] : --VP + pAV + (l/3),uv(vV); (2.1) 

ap,'at + v(pV) = o. 

These equations must ,  in general ,  be augmented with the energy-ba lance  and state equations, but it will 
be shown below that under the s tated conditions and assumptions the average  flow can be regarded  as incom- 
p ress ib le  at dis tances of the o rde r  of the sound wavelength along the duct, and the fluctuation (compressible)  
flow is completely determined in the p robIem as stated. 

We rep resen t  the var iables  V, p, and p by sums of steady and fluctuation components,  which we subst i -  
tute into (2.1), and then af ter  the usual operat ions  of t ime averaging and subtract ion of the average equations 
f rom the complete equations, reject ing small  quantities by means  of (1.2) and (1.3), we obtain a sys tem of 
equations for  the fluctuation components:  

poOVi/Ot = --VPi + phVi; (2.2) 
OpffOt + P0VVl : O; Pl : Pi c2. 

The las t  equation in (2.2) is taken f rom (1.2). The solution of (2.2) sat isfying the sticking condition at 
the wall and condition (1.1) has the form [taking (1.3) into account] [3] 

u 1 = A cos kx[cos o)t -- exp (--~l).cos (o)t -- ~l)]; (2.3) 
v 1 : - - ( k / ~ | f ~ A  sin kx[cos (co t -  .~/4) -- exp (--~l).COS((ot- q -- a/4)], 

where  u 1 and v 1 a re  the longitudinal and t r a n s v e r s e  components of the vec tor  V1; fl = ~ 77 = yfl; and 
y is the distance f rom the wall. The express ion  for  v 1 in (2.3) is valid only nea r  the wall (at distances of 
o r d e r  ~ / w ) ,  because relat ions (2.3) were  obtained in the boundary- l aye r  approximation. 

We now determine the steady flow. It is  evident that the undisturbed steady flow can be t rea ted  as in- 
compress ib le ,  i.e.,  as Poiseui l le  flow, at dis tances of the o rde r  of the sound wavelength along the duct. Thus, 
we approximately  obtain from the express ion for  Poiseui l le  flow (allowing for  the fact that P l / P u  ~ M1 ) 

lop u OX I ~ Uot. t/h'- ~ (Mu/M1)(v/o)h2)pic(o, 

where  Pu, Pu, and M u a re  the p r e s s u r e ,  density, and Mach number  in the undisturbed flow; 

Comparing the foregoing express ions ,  we obtain for the finite values of Mu/M 1 (or  M0/M 1) 

laPu laxl<<lpd~,l, 

because  v /u )h  2 << 1 by stipulation. Consequently, the p r e s s u r e  difference Pu at a distance k along the duct is 
small  in compar i son  with the fluctuation p r e s s u r e  difference Pl. This means  that the density Pu as well 
va r i e s  only slightly at distances of o rde r  k in compar ison with the variat ion of the fluctuation density Pl, i.e., 
the undisturbed flow can be t rea ted  as Poiseui l le  flow over  an interval  of length k along the duct. 

We show below that the steady " increment"  to the Poiseui l le  flow velocity is equal in o rde r  of magnitude 

to u~ /c .  Then u~ (2.4) 
[ div V o I "" c-L-" 

From the equation of continuity in (2.2) we obtain 

Idiv Vii 

It follows f rom (2.4) and (2.5) that 

Inasmuch as M 1 << 1 by stipulation, we have 

] d ivVo ] 
I divV~ I 

r  

o uT 
~ M i . 

I d t v  v01 << I d t v  v , I ,  permi t t ing  us to set div V0 : 0. 

In light of the foregoing we wri te  the steady-flow equation in the form 

po(V0v)Vo = - v p 0  + ,~Av0 - (  ,OlOVl, Ot} - (  ~o(Vl v)Vl: ; 
div V0 = 0, 

(2.5) 

(2.6) 
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where  the angle b racke t s  denote the average  over  the wave period. The vetocity V0 must  vanish at the duct 
wall;  moreover ,  it is requi red  to specify the m a s s  flow of fluid through the c ros s  section of the duct (the 
m a s s  flow is determined by the given Poiseul l le  flow). Let V 2 denote the secondary flow veloci ty (�89 and v 2 
a re  the longitudinal and t r a n s v e r s e  components) ,  so that the total average  veloci ty V0 is the sum of V2 and 
u 0 (Poiseui l le  flow veloci ty  vec tor  in the direct ion para l le l  to the duct wall) .  Then, introducing the s t r eam 
function r 2 = 0~/Oy, v 2 = - 0 ~ / 0 x )  and computing the t e r m s  in the angle brackets ,  we rewri te  (2.6) in the 
form 

(u 0 @ 0~;,'0y)(05~ bx) -- (Or 2 - -  0_~ '6~)  = v,AA~ =- ](y) sin 2kx,  (2.7) 

where  
f (y)  = --(A~k[~, 2) [--2 exp(--tl) cos q -- exp (--q) sin q -7 exp(--2q)], 

with the boundary conditions 
at the wall (g=0) 

~, = O~/Og = 0; 

on the axis (y=h) 

~; = O~;:Og "- = O. 

The function f(y)  differs significantly f rom zero only in a wall zone of thickness ~ ( v / w .  It can the re -  
fore  be assumed  that the unknown secondary flow forms a boundary l ayer  in the wall zone (this assumption is 
just if ied by the end resul t ) .  Then, compar ing the t e r m s  on the lef t -hand side of Eq. (2.7) with the t e rm 
v Lx/x$, we ver i fy  that they a re  all much sma l l e r  in absolute value than the compar ison term.  For  example, 
the f i r s t  t e rm in (2.7) has o rde r  of magnitude 

InrOAd, 0~1 ~ [~'~d~] 6 ~-. 

where  5 = ~/2 v / w ;  also 

It is evident f rom this resul t  that 
luoO'AUOxl ~ Uo ~.o) .... Mo. 

The given rat io is much sma l l e r  than unity, because M 0 << i by stipulation. Thus, in a wall zone of thickness 
5 Eq. (2.7) is simplified: 

v(O~q: Og ~) = - - f (y )  sin 2kx. (2.8) 

The solution of (2.8) sat isfying the wall sticking condition and bounded in the wall zone has the form 

u,  = (A2k sin 2kx 4v{~:)[--(l 2) exp (--q) cos ~l--(3/2) exp (--~1)sin ~] - 
--(1/4) exp (--2q) + 3/~t], 

We do not compute the express ions  for the t r ansve r se  component v2, because  it is not 

(2.9) 

where u 2 = a~/0y. 
needed below. 

Substituting (2.9) into (2.7), we verify that all terms on the left-hand side of (2.7) are less in absolute 
value than [ p ~  I. At the outer boundary of the wall zone ( 77 -~ ~) we have from (2.9) 

u2 = (3/8)(A~,c) sin 2kx. 

In the external  domain, i.e., everywhere  except the wall zone of thickness ~ 5 ,  the following equation holds: 

(Uo -i- O~iOy)(Oh~/Ox) - -  (O~[:,'Oa')(d2uo'dy '- ~- O5~/Oy) =vhA~, (2.10) 

along with the boundary conditions 

~=0,  O~/Oy = (3iS)(A~/c) sin 2kx at y=0 ;  

~[~=0, O"I~V'Og2=O at y = h .  (2.11) 

The e r r o r  in [2] a r i s e s  insofar  as Eq. (2.8) is assumed to be valid in the wall and the external domains;  
in the p re sen t  s tatement  of the problem there  is no justification for  this inference. 

It is evident f rom (2.10) and (2.11) that the value of the function 0~b/0y = u 2 is equal in o rde r  of magni-  
tude to A2/c, whence we infer that 
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lu.JUol ~.  A 2 /cUo = (M~/M0)"M0, (2.12) 

where  U0 is the maximum value of the Poiseu i l le  flow velocity.  F o r  finite values  of (M1/M0) 2 the rat io of 
] u2 i to ] U01 is  small ,  s ince M 0 << 1. The cha rac t e r i s t i c  l inear  scales  of p rob lem (2.10), (2.11) a re  the sound 
waveIength ~ and the half-width h of the duct. We can t h e r e f o r e  es t imate  the t e r m s  of Eq. (2.10), showing 
that  the nonl inear  t e r m s  on the lef t -hand side a re  small  in compar ison  with the l inear  t e rms ;  the given equa- 
t ion is then l inea r i zed  and as sumes  the form 

uoOA~./Ox - -  (d'-uo/dy2)(O~2,'Ox) = vAA% (2.13) 

Relat ions (2.13) and (2.11) descr ibe  the secondary  flow in the external  domain, i .e. ,  everywhere  except a na r -  
row wall  zone of thickness  ~6,  in which the secondary  longitudinal veloci ty  u 2 is given by express ion  (2.9). 

We seek the solution of p rob lem (2.13), (2.11) in the form 

*(x, y) ---- Real (I)(y) exp ( - -2 ikx ) .  (2.14) 

We introduce the following dimensionless  ( indicated by an overbar )  var iab les :  

~ D  ' ") - -  [ - -  8(I)cj3hA-; y = y , h ;  uo=uo /U  o. 

Substituting (2.14) into (2.13) and (2.11), we obtain a l inear  o rd inary  differential  equation in @: 

~ " '  -- ~ ' (S~ '  -- 2i~.Re~) + ~(16~. ~ + ~i~ Be -- 8i~ ~ Re~o)=0 (2.15) 

along with the boundary conditions 
alP=0, O ' = i  for y=0; 

~=(1)"=0 for y=l, (2.16) 

where the prime denotes differentiation with respect to y; (~ = kh; Re = U0 h/v. 

Problem (2.15), (2.16) is readily solved by a numerical method for not too large values of the parameter 
Re ~. The linear boundary-value problem is reduced to a system of Cauchy problems [4], which can be inte- 
grated, for example, by the Rtmge-Kutta methoct 

The results of the solution of problem (2.15), (2.16) are given in Figs. 1-3. Figure 1 shows the second- 
ary-flow streamline pattern for Re = 50, ~ = 1, where the zero ordinate corresponds to the outer boundary of 
the wall boundary layer of thickness ~5 and unity, to the midcUe of the duct. Figures 2 and 3 show the pro- 
files of the dimensionless longitudinal velocity u2 = 8u20/3A2 in various cross sections of the duct for Re = 
50 and 1000, respectively (solid curves) and ~ = 1. The u 2 profiles in the duct cross sections corresponding 
to 2kx > ~ are not shown, because in this case u2 changes sign, i.e., u2 (2kx + ~) = -u2 (2kx) according to 
(2.14). 

w For large values of Re ~ difficulties arise in the numerical computation of problem (2.15), (2.16) in 
connection with the smallness of the parameter 1/Re ~ for the leading derivative in Eq. (2.15). However, the 
problem can be simplified. For Re c~ >> 1 the secondary flow also forms a boundary layer in the external 
domain (as is evident from Figs. 2 and 3). Within the limits of this boundary layer the expression for the 
Poiseuille flow velocity can be regarded as a linear function of the transverse coordinate. With the fore- 
going in mind we can compare the terms in Eq. (2.15) as in the derivation of the Prandtl equations; after the 
rejection of small terms Eq. (2.15) assumes the form (in new dimensionless variables) 

t "  -- tlt=O, (3.1) 

. uo 
y/h 

0 O~ 5 O, 7 I, ! 2 k~c/J~" 

Fig. 1 

0,e 

0,2 

0 

/h LI l 

-o,8 -o,4 o,o 
~2=su2c13A2 

Fig. 2 

0,4 
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I 2k:~=o II 

, i ._LA_ - A 
f I !...fL / 1  I~ 

-0,8 -0,4 0,0 0,4 

Fig. 3 

where  the p r i m e  denotes  different ia t ion with r e s p e c t  to the coordinate  ~: 

11 = (-- 4~) I/3 y (Re~ (I) (Rec~)I/3( - 4i)b'3c 
h ; ~ = d~"; (:I)= (3/8)hA2 

The function ~ and i ts  de r iva t ives  a r e  subject  to the boundary conditions 

~)=o, ~ ' :~  fo~ ,1=o; (3 .2 )  

r fo~ l~1 I-+ ~ .  

Eqtmtion (3.1) is an Ai ry  equation. The dashed curves  in Figs.  2 and 3 r e p r e s e n t  the longitudinal veloci ty  
p ro f i l e s  R~ obtained f rom (3.1) and (3.2), along with the s ame  r e su l t s  reduced  to the cor responding  va lues  of 
Re and a .  It is  seen  that  for  Re ~ = 1000 ( see  Fig. 3) the solutions of p r o b l e m s  (2.15), (2.16) and (3.1), (3.2) 
di f fer  insignif icant ly.  

Equation (3.1) is val id  under  definite cons t ra in t s  on the values  of Re ~. The l inea r  equation (2.15) was  
obtained f rom (2.10) by means  of the approx imate  re la t ion  (2.12). In the case  of l a rge  values  of 1Re G, how- 
ever ,  the m a x i m u m  Poiseu i l l e  flow veloci ty  U0 cannot be  used as  the c h a r a c t e r i s t i c  ve loci ty  scale  of the un- 
d is turbed flow(2.12}, b e c a u s e t h e  th ickness  Be o f thebounda ry  l a y e r b e c o m e s  smal l  in compar i son  with the width 
of the duct. In this  case  the app rop r i a t e  ve loci ty  sca le  is  the quantity U0 5e/h.  For  the l inear iza t ion  of Eq. 
(2.10) it  is  n e c e s s a r y  to sa t i s fy  the condition [analogous to condition (2.12)] 

!u,h/Uo&l << i.  (3.3) 

Inasmuch as  
fie h N i,'(Re a)l/a, 

we can r ewr i t e  (3.3) in the f o r m  

(Re cr a << (Mo/M1y(I/Mo). 

The au tho r  is indebted to V. E. Nakoryakov for  valuable  comment s  and in teres t .  
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